Composites Part B 146 (2018) 132-144

journal homepage: www.elsevier.com/locate/compositesb | ==

Contents lists available at ScienceDirect TIOOSTES

Composites Part B

A new type of (TiZrNbTaHf)N/MoN nanocomposite coating: Microstructure
and properties depending on energy of incident ions

A.A. Bagdasaryan™”, A.V. Pshyk""

Check for
updates

, L.E. Coy", P. Konarski®, M. Misnik“‘, V.I. Ivashchenko®,

M. Kempinski™, N.R. Mediukh®, A.D. Pogrebnjak®, V.M. Beresnev?, S. Jurga”

@ Sumy State University, 2, Rymsky Korsakov Str., 40007, Sumy, Ukraine

P NanoBioMedical Centre, Adam Mickiewicz University, 85, Umultowska Str., 61-614, Poznari, Poland

€ Tele & Radio Research Institute, 11, Ratuszowa Str., 03-450, Warsaw, Poland

d Department of Atomic, Molecular and Optical Physics, Faculty of Applied Physics and Mathematics, Gdarisk University of Technology, Poland

€ Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3, Kryzhanovskogo Str., 03680, Kyiv, Ukraine
fFaculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznari, Poland

8 Kharkiv National University, Svobody Sq., 4, 61022, Kharkiv, Ukraine

ARTICLE INFO

Keywords:

Nitride coatings
Multilayer structure
Nanocomposite

Solid solution
Microstructure
Mechanical properties

ABSTRACT

A novel (TiZrNbTaHf)N/MoN nanocomposite coatings, which consist of the nitride of the high-entropy alloy and
the binary nitride, were synthesized by vacuum-arc deposition at various substrate biases. The elemental
composition, chemical bonding state, phase structure, microstructure and mechanical properties of the coatings
were studied by high-resolution experimental methods: SIMS, GDMS, XPS, XRD, HR-TEM and nano-indentation.
It was found that the chemical state of the (TiZrNbTaHf)N/MoN coatings has a complex nature, which consist of
a mixture of nitrides of constituting elements. It was also shown that the coatings are based on B1 NaCl-
structured y-Mo,N-phase with a mixture of crystallographic orientations (111), (200), (220) and (311) together
with the B1 NaCl-structured (TiZrNbTaHf)N solid-solution phase. First-principles calculations demonstrated that
the metal sub-lattice of the (TiZrNbTaHf)N solid solution can be based on Ti; Hf;Ta;.xy, ZryHfyTa; .y,
Zro.25Tig.2sTag 5 ternary alloys, which have the lowest mixing energy. The HR-TEM results showed that the
nanocomposite nitride coatings have nano-scale multilayer structure with modulation periods ranged from
20nm to 25nm. The maximum hardness of approximately 29 GPa demonstrated the coating deposited at a
higher energy condition (—200V) with the thinnest modulation period of bilayer of 20nm (15nm of
(TiZrNbTaHf)N and 5 nm of Mo,N).

1. Introduction

Nanocomposite architecture allows to achieve excellent functional
properties, especially high hardness and low coefficient of friction.

The recent breakthrough in the last century in engineering materials
is design of nanocomposite coatings, which possess superior mechanical
and chemical properties, such as high hardness, stiffness, wear re-
sistance, low coefficient of friction, low thermal conductivity etc., in
contrast with single layer coatings [1-15]. Such nanocomposite mate-
rials are nano-multilayer composites, which have large amount of two
or more separated nanocrystalline phases with different elastic modulus
and lattice parameters. In order to obtain multilayer coatings with su-
perior functional properties, it is important to adjust carefully their
elemental composition and modulation wavelength. It was found that
the optimum properties occurs in multilayer coatings with bilayer
period A in the range of 4-50 nm depending on elemental composition
and deposition conditions [16,17].
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There are several hardening mechanisms acting at the same time but at
different degrees in the multilayer coatings. First, the hardness altera-
tion could be due to the hindering of dislocation across the layer in-
terfaces. Also, if the constituent layers with different lattice parameters
are grow epitaxially, the resulting coherence stress field at the inter-
faces act as obstacles for dislocation movements [18-20]. Few pub-
lications showed another mechanism of hardening, known as Orowan
strengthening, which act in structures with nanometer modulation
wavelength [21,22]. The improvement in hardness according to this
effect occurs at the expense of the precipitation, stopping of dislocation
and formation of obstacles, such as “Orowan loop”. Despite the great
variety of strengthening mechanisms in multilayer structures, the
overall hardness enhancement originates from contributions of all
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mechanisms. In addition, the effects acting in single-layer coatings,
especially in multi-principal elements alloy, such as Hall-Petch effect,
solid solution hardening, should be taken into account [23].

In the last decade, it has developed a new approach to designing
engineering materials that possess a wide range of unique properties,
high-entropy alloys (HEAs) or multi-principal elements alloys (MPEAs).
There are two major definitions of HEAs: based on the composition and
on the configurational entropy [24-28]. According to D.B. Miracle et al.
[25], HEAs are the alloys, which contain at least 5 constitutional ele-
ments with an atomic percentage between 5 and 35%. Moreover, these
alloys can be defined as materials maximum value configurational en-
tropy of which is 1.61R (where R is the gas constant, 8.314
jx k™! x mol™") and minimal value is 1.36R. In accordance with
these definitions, the basic concepts of HEAs is high entropy of mixing,
which can promote the stabilization of a disordered solid solution (SS)
and prevent the formation of ordered compounds, like intermetallics
(IM) due to the lattice distortion effect and sluggish diffusion, which
can be explained by kinetic theory [26].

Since the appearance of the first studies of HEAs [29,30], more than
1000 scientific works have been published to date. The relationship
between microstructure of the new alloys, which can include SS (with
BCC, FCC and HCP structures), IM and even amorphous state [31-33]
and their physical properties was investigated [34-36]. It was shown
that the HEAs possess different outstanding functional properties, like
superconductivity with transition temperature T, = 7.3K [37], high
level electrical resistivity [38], high saturated magnetization [39,40],
high corrosion resistance [41-43], good hydrogen storage properties
[44-47]. Moreover, HEAs were used as a template for graphene pro-
duction [48], high-entropy steel and transformation-induced plasticity-
assisted dual-phase high-entropy alloys [49-52]. For achievement su-
perior mechanical behavior and thermal stability HEAs were alloyed by
N, C, O and B, like: (TiHfZrVND)N [53], (AIMoNbSiTaTiVZ)N [54],
(TiVCrZrHf)N [55], (TiTaCrZrAlRu)N [56], (CrTaTiVZr)N [57],
(TiZrNbNfTa)C [58], (MgNiCoCuZr)O [59], (AlCrTaTiZr)O [60],
(MgCoNiCuZn)O [61], CuCoNiCrAl, sFeBy [62] and others [63-67].

Since the appearance of first publication by Koehler, the variety of
different type of multilayer composites, like metal/metal (Ni/Ti, Co/Ni,
Fe/Ni [68-70]), ceramic/metal (TiN/Ag, Al/AIN, NbN/Ag, Ta/TaN
[71-74]) and ceramic/ceramic (CrAlSiN/TiVN, AICrSiN/AlCrSiON/
AICrO, TiN/TiAIN [9,17,75]) have been intensively investigated. Re-
cent papers have showed the possibility of using different type of
composites based on HEAs with intrinsic multilayer architecture, like:
AlCoCrCuFeNi/Mg [76], (TiHfZrVNbTa)N + DLC [77], (FeCoNiMnCr)
+MeC [78], TiAISiCN/MoSeC [79]. However, the research work de-
voted to the composites with a HEA layer is still very limited. The only
pure metals [76] and carbide interlayers [77-79] have been studied,
assuming that the preparation of intermediate nitrides, will affect the
Nitride based HEAs. Nevertheless, although it is worth to assume a large
diffusion due to the complex stoichiometry of HEAs, especially in si-
milar interfaces, such as in case of Metal-Nitride/Metal-Nitride, these
effects have remain unexplored.

It is well known, that the deposition parameters, like temperature of
deposition, energy of incident particles, pressure of working gas and
others have a significant influence on structural state and overall
properties. In our work we developed and investigated a novel
(TiZrNbTaHf)N/MoN nanocomposite coatings, which deposited by va-
cuum arc deposition under different energy conditions. The chemical
stability and growth of such complex nanocomposites have been poorly
studied. Moreover, the influence of overall ions deposition energy on
crystallization process and as a result on interaction between nano-
layers should be taken into account and analyzed in order to avoid
malfunction of nanocomposite coatings. Clearly, the understanding of
microstructural features of such nonhomogeneous complex systems is
essentially needed in order to move further toward the improvement of
the physical properties of high-entropy based nanocomposite thin films.

This article contributes to the gaining of knowledge about the

133

Composites Part B 146 (2018) 132-144

growth mechanism, structural evolution and functional properties of a
novel (TiZrNbTaHf)N/MoN nanocomposite nitride coatings based on
the high entropy alloy. In order to achieve this aim, six transition metals
Ti, Zr, Nb, Hf, Ta and Mo are selected due to the their similar electronic
configuration, which is favored by the octahedral grouping of the metal
atoms around a central nitrogen atom, which will allow to achieve a
single-phase stable structure.

2. Experimental methods
2.1. Growth and characterization

The five-element TiZrNbTaHf cathodes were obtained by vacuum-
arc melting method. Ingots were melted at least six times to achieve
necessary compositions homogeneous. All the samples have been pre-
pared by vacuum-arc deposition in “Bulat-6” chamber. The deposition
was carried out from the two different cathodes (1 — TiZrNbTaHf alloy,
2 — Mo), diametrically opposed to the substrate holder during con-
tinuous rotation of the holder during 1h. Steel discs and plates
(12H18NO9T steel - C < 0.12 wt %; Si < 0.8 wt %; Mn < 2.0 wt %; Cr —
17 +20wt %; Ni - 8+11wt %; Ti < 0.8 wt %.) with @ = 45mm and
thickness of 4 mm were used as a substrate. The working gas pressure
used during deposition was 0.53 Pa while a negative bias of —100,
—200 and —300V was applied to the substrate (see Table 1). The
temperature of deposition was 400 °C.

The X-ray photoelectron spectroscopy (XPS) measurements were
performed in UHV conditions using the monochromatic Al Ka X-Ray
source and Sphera II photoelectron energy analyzer (Scienta Omicron).
All measurements were made in the ultra-high vacuum chamber at a
pressure around 10~ ° mbar. The spectra were taken at 20 eV pass en-
ergy and 0.1 eV resolution.

SIMS measurements were done with the use of 5keV Ar™ ion beam.
SIMS analyser model SAJW-05 is equipped with Physical Electronics
06-350E ion gun and QMA-410 Balzers quadrupole mass analyser with
16 mm diameter rods.

Glow discharge mass spectrometry (GDMS) analysis was conducted
with a SAWJ-01 instrument and SRS-300 quadrupole mass analyzer
with 6 mm diameter rods. The 1.8kV DC glow discharge voltage was
applied and Ar working pressure was 0.2 Torr.

The structure and elemental composition was analyzed using
Scanning electron microscopy (SEM JEOL 7001TTLS) with Energy
dispersive X-ray spectroscopy. The electron transparent lamellas of the
coatings for TEM measurement were prepared using a focused ion beam
(FIB) operating with Ga ions. High-resolution transmission electron
microscope (HRTEM JEOL ARM 200F) operating at accelerating vol-
tage of 200 kV was used to image the microstructure of the coating and
evaluating of thickness period of multilayers. The microscope was also
equipped with an EDX detector used to determine the distribution of
the elements.

The crystal structure was characterized by X-ray diffractometer
PANalytical using filtered Cu-Ka radiation (1.5418 10\) with PIXcel 3D
detector in Bragg-Brentano geometry. Spectra were recorded in con-
tinuous scanning mode at room temperature (300 K), with the 20 ran-
ging from 20.0° to 80.0° and scanning step was 0.006°. Data were
processed in the PANalytical X'Pert software.

Table 1
Experimental conditions.
Ne Coatings LA Usp, V Py, Pa
1 (TiZrNbTaHf)N/MoN 90/ —100 0.53
150
2 (TiZrNbTaHf)N/MoN 90/ —200 0.53
150
3 (TiZrNbTaHf)N/MoN 120/ —300 0.53
140
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The nanoindentations were performed at room temperature on
(TiZrNbTaHf)N/MoN coatings using Hysitron TriboIndenter 950
equipped with a Berkovich diamond tip TI-0039 (conical angle 142.3°
and 100 nm tip radius) calibrated against the fused silica sample. In
order to measure the hardness and reduced elastic modulus of the
coatings at different depth, the multiple load function in the form of
trapezoidal sinus was applied to the indenter with continuously in-
creasing load up to a maximum 10 mN load. The measurements were
repeated several times. The hardness and the elastic modulus were
evaluated using the standard procedure proposed by Oliver and Pharr
[80].

The elastic modulus of the coatings was calculated using the fol-
lowing formula [80]:

1—v?2

11— ;
E;

E, E

E,

’ @
where E, - effective Young's modulus of coating material, E and v —
Young's modulus and Poisson's ratio of coating material, E; and v; —
Young's modulus and Poisson's ratio of the Berkovich diamond indenter
(E; = 1140 GPa and v; = 0,07), respectively.

2.2. Computational details

We considered the 8 atoms cubic cells to model Zr,Ti,Ta;. yN,
Zr,Hf,Ta; . ,N and Ti,Hf,Ta;.,, (x, y = 0.0, 0.25, 0.5, 0.75 and 1.0)
solid solutions (alloys) with the B1 structure (space group Fm-3m, No.
225). These cells were used in first-principles calculations that have
been carried out carried using the Quantum-ESPRESSO code [81]. The
details of the calculations can be found in our previous work [63],
therefore, we note only the following main approaches. In particular,
Vanderbilt ultra-soft pseudo-potentials were used [82]. For exchange-
correlation energy, the generalized gradient approximation (GGA) of
Perdew et al. [83] was employed. The structures were optimized by
using the Broyden-Fletcher—Goldfarb-Shanno (BFGS) algorithm [84].
For Hf and Ta the 4f states are not considered as the valence states,
because they are completely filled and chemically inert. The mixing
energy of an alloy (E;x) was:

Emix(MexMeyMel»x-yN) = Etot(MexMeyMel»x-yN) - XX Etot (MeN) -
y X ‘Eyor (MeN) — (1-x- y) X ‘Ey (MeN), where Me, Me, Me = Ti, Zr, Hf
and Ta.

3. Results
3.1. Elemental composition and chemical bonding

Before analyzing of elemental composition by SIMS and GDMS
methods, it will be useful to analyze the chemical bonding states of
(TiZrNbTaHf)N/MoN nanocomposite coatings by means of XPS.

The XPS survey spectrum (see Fig. 1 (a)) contains peaks, which
associated with titanium, zirconium, molybdenum, niobium, tantalum,
nitrogen and oxygen. Carbon (peak at 284 eV) and oxygen (peak at
532 eV) peaks are due to the contamination of the coating by the small
amount of residual gases in vacuum chamber during the deposition and
contamination of the coating surface by ambient atmosphere [85]. For
analyzing, we selected Ti2p, Mo3d, Zr2p, and Nb3d core-level peaks
due to the absence of overlapping effects of these peaks with the other
constituent elements of the coating. Importantly, Hf was detected in the
coating as well, but the intensity of Hf4f and Hf4p,,, peaks was very
low and inappropriate for analysis, while the Hf4s may overlap with
Ols.

The Zr3d spectrum (Fig. 1 (b)), containing peaks corresponding to
the spin-orbit split 3d3,» and 3ds,, electrons, was de-convoluted into 2
doublet components: (1) peaks at 183.04eV and 179.42 eV, respec-
tively, and (2) peaks at around 184.44 eV and 181.89 eV, respectively.
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According to the literature data, the energy position of the first com-
ponent can be due to ZrN, bonds, while the second component is at-
tributed to ZrO, bonds in the coating [86].

The Ti2p XPS spectrum was de-convoluted into 3 spin-orbit doub-
lets. In this study, the peaks of Ti2p;,, and Ti2p;,,at 458.15eV and
464.15 eV, respectively, are associated with the presence of TiO,; the
components at around 455.16 eV and 460.76 eV, respectively, are re-
lated to Ti-N bonds. Besides these chemical states, the intermediated
state was found in the coating, which corresponds to Ti-N-O bonds at
456.60 eV for Ti2ps,, peak and 462.44 eV for Ti2p; ,» peak, which is in
good agreement with binding energy reported in the literature [87,88].

The Nb3d spectrum was fitted into 3 spine-orbit doublets. The spin-
orbit split 3d;,, and 3ds,» peaks at around 206.97 eV and 203.74 eV,
respectively, are correspond to the binding energy of NbN. The com-
ponents at around 206.52 eV (Nb3d3,,) and 209.46 eV (Nb3d3,5) can be
assigned to Nb,Os, and at 204.79eV (Nb3ds,,) and at 207.64eV
(Nb3ds,5) - to NbO [89,90].

The Mo3d3,» and Mo 3ds,» peaks of the Mo3d spectrum have been
de-convoluted into 3 chemical states: molybdenum nitride, MoO, and
MoO3 with binding energies of 228.19eV (Mo3ds,») and 231.41 eV
(Mo3ds,3), 229.31 eV (Mo3ds,,) and 231.34eV (Mo3ds,5), 232.69 eV
(Mo3ds,,) and 235.19 eV (Mo3ds,»), respectively [91].

Fig. 2 shows typical depth profile of (TiZrNbTaHf)N/MoN coatings.
It is clearly visible that the signal from all elements are well dis-
tinguished. The intensity can be related to a semi-quantitative con-
centration of the ion fragments of constituent elements along the
coating thickness. Analysis of these results confirms the presence of
secondary ion current oscillation, which corresponds to formation of
multi-layered structure consisting of (TiZrNbTaHf)N and Mo,N layers.
The decreasing of intensity of the oscillations with an increasing of
sputter time is not due to the destruction of a multilayer structure. In
our opinion, this kind of changes could be explained by changes in
sputtering rate and increasing of the curvature of the layers.

In case of GDMS analysis (see Fig. 3) it was shown, that the ion
current intensities of constituent elements decreases with the increasing
of thickness of each samples (see Fig. 3). This effect is due to the de-
veloping conditions of the glow discharge during the analysis. It is
worth to note that nitrogen and tantalum signals are burdened by high
background levels. In fact, N ion signal (measured as NoH™" ion current)
is high due to high nitrogen background in the glow discharge cell and
Ta signal is high due to the use of tantalum diaphragm as an inter-
mediate cathode in the glow discharge cell. Nevertheless, the dis-
tribution of all the remaining elements is close to uniform, except Hf,
which signal is close to the noise level.

3.2. Structural analysis and microstructure

Diffraction patterns from (TiZrNbTaHf)N/(MoN) multilayer nano-
composite coatings deposited on steel under different substrate bias are
presented in Fig. 4. As we can see, XRD patterns contain FCC y-Mo,N
(111), (200), (220) and (311) together with (TiZrNbTaHf)N (111),
(200), (220), (222) and (311) peaks.

In Table 2, the calculated lattice constants for TiN, ZrN, HfN and
TaN in a comparison with the corresponding experimental and theo-
retical values are showed. One can see that the calculated lattice
parameters are in good agreement with those gained in experimental
and theoretical investigations of other authors. Nevertheless, there is a
strong deviation of the calculated values from the experimental ones for
TaN, which could be ascribed to nonstoichiometry of the experimental
TaN samples.

From these XRD patterns, we can observe the changing of preferred
orientation from (111) + (311) to (200) under different substrate bias.
At low Uy, the highest peaks are at 20 = 69.67°, 20 = 34.65°, which
correspond the (311) and (111) planes of the (TiZrNbTaHf)N layer and
20 = 36.11° responsible for (111) plane of the y-Mo,N layer. When
substrate bias increases to —200V, the intensity of (111) planes of
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Fig. 1. XPS spectra of (TiZrNbTaHf)N/MoN coating deposited at U,

(TiZrNbTaHf)N and y-MooN layers reach maximum and weak (200)
(TiZrNbTaHf)N, (222) (TiZrNbTaHf)N and (311) y-Mo,N peaks can be
observed. The preferred orientation of (TiZrNbTaHf)N/MoN grains was
dramatically changed from (111) to (200) (TiZrNbTaHf)N, (200) y-
Mo,N and (220) y-Mo,N at —300V.

Figs. 5 and 6 present TEM cross-sectional images and SAED patterns
of (TiZrNbTaHf)N/MoN multilayered coatings deposited under —100 V
and —300V, respectively. STEM analysis of the (TiZrNbTaHf)N/MoN

Binding energy, eV

= —200V: a) XPS survey spectrum; b) Zr3d, Ti2p, Nb3d, Mo3d.

multilayered coatings, Figs. 5 and 6 b, confirm the columnar growth
with dark and bright layers. Taking into account the different sputtering
coefficient of the constituent atoms and EDX mappings, the bright
layers on Fig. 5 b and 6 a can be as assigned to (TiZrNbTaHf)N with
thickness 15-20 nm and dark layers to Mo,N with thickness of around
5 nm. From SAED patterns, which show in Fig. 5 ¢ and 6 (the inset), the
reflections (111), (200), (220), (222) and (311) corresponding to the
FCC phases are clearly identified. The reflections corresponding to fcc-
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Fig. 2. SIMS analysis of N*, Mo*, Zr*, Nb*, Hf", Ti* and Ta™ ion emission in time of erosion of (TiZrNbTaHf)N/MoN samples at different substrate bias. The

secondary ion current data is shown in linear scale versus erosion depth.

(TiZrNbTaHf)N and fcc-Mo,N phases are very close to each other,
which is in good agreement with the results shown in XRD patterns. The
modulation period estimated from the TEM images was 20 nm for the
coating deposited at —100V and 25 nm at — 300 V. The changes in the
modulation period are associated with the increase of the TiZrNbTaHf
target current during deposition of the coating under —300 V.

The HRTEM images and its corresponding inverse FFT images,
provide a hint of the internal structure of the columnar grains observed
in the coatings (see Fig. 5 (d, e) and Fig. 6 (c, d)) demonstrating the
formation of randomly oriented nanocrystalline sub-grains of
(TiZrNbTaHf)N/MoN multilayered nanocomposite coatings with sizes
between 5 and 15 nm (see Table 3). The inverse FFT filtering of (311)
oriented grains of fcc-(TiZrNbTaHf)N and (311) oriented grains of fcc-
Mo,N phase of the coating deposited under —100V (Fig. 5 e) revealed
that the corresponding lattice fringes are maintained through the in-
terface of the corresponding layers without interruption during the
grain growth. Importantly, these observations imply that the grains
grow “epitaxially” with fee-(TiZrNbTaHf)N(311)]|fce-Mo,N(311), or at

least, highly coherently between interfaces. This local cube on cube
epitaxial growth is due to the fact that both layers have the same
crystalline structure, with a lattice mismatch of around 4.6%. The same
growth was observed for other orientations. Arcing of the (311)-as-
signed reciprocal-lattice points on the FFT pattern (Fig. 6 d, inset)
points on a slight misorientation of the corresponding grains. Several
arrays of mismatch dislocations were observed in HRTEM images (not
showed here), which are introduced due to the relaxation of coherency
strains accumulated as a result of the lattice mismatch. It should be
noted, that these dislocations caused lattice distortion, which can lead
to the formation of sub-grain structure.

The increase in bias voltage up to 200 V caused degradation of the
(311)-oriented grains of Mo,N phase, but promoted the development of
(111) texture, as clearly visible on XRD pattern. Therefore, the same
local epitaxy with cube on cube growth can be expected, although
texturized in the (111). However, an abrupt change of the growth
mechanism is observed for the coating deposited at 300 V. A complete
degradation of (111) oriented MoN grains and significant sharpening of

Ion current, A

1E-15

1E-16

0

—
4

I B
8 12

Depth, um

Fig. 3. GDMS analysis of (TiZrNbTaHf)N/MoN samples deposited at —100 V, —200 V and — 300 V substrate bias. The ion current data is shown in logarithmic scale.
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Fig. 4. XRD spectra of (TiZrNbTaHf)N/MoN multilayered nanocomposite
coatings under different substrate biases.

Table 2

Calculated lattice parameters (in A) for TiN, ZrN, HfN and TaN.
TiN ZrN HIN TaN
4.247 4.592 4.537 4.407
4.241°% 4.600" 4.525" 4.340"
4.25" 4.60° 4.54" 4.408°
4.275° 4.583°¢ 4.54¢

2 Experiment [92].
b First-principles pseudo-potential method (VASP code) + GGA [93].
¢ First-principles ultrasoft pseudo-potential method + GGA [94].

Growth direction
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the (200) reflections of both phases, as well as a shift of other reflec-
tions of (TiZrNbTaHf)N phase to higher angles are observed. Due to
much lower lattice mismatch of around 2.2%, the (200) oriented grains
of both lattices demonstrated cube on cube epitaxial growth (not
showed here). At the same time, the absence of (111) oriented Mo,N
grains renders impossible the coherent growth of (111) (TiZrNbTaHf)N
grains with Mo,N layer, effect that is clearly demonstrated in Fig. 6 (c,
d). Importantly, there is no crystallographic coherence between the
(111) (TiZrNbTaHf)N and (200) Mo,N grains and therefore the arrays
of stacking faults are introduced at the interface between the layers
visible as a smearing of the reciprocal-lattice points on the FFT pattern
acquired at the interfaces (Fig. 6 (e, g)).

3.3. Nano-indentation measurements

Hardness and Young's modulus values of (TiZrNbTaHf)N/MoN
multilayer nanocomposite coatings are presented on Fig. 7 as a function
of the indenter displacement. It is important to remark that at low
penetration, roughness of the films overcomes the Berkovich shape,
thus stable values can be observed above penetrations of 50 nm.

The hardness and Young's modulus strongly depend on substrate
bias (see Fig. 7). The initial increase of substrate bias from —100V to
—200 leads to increase of the hardness and Young's modulus from 29 to
306 GPa to —200 V-33 and 315 GPa, respectively. At the highest sub-
strate bias (at —300V) the hardness and Young's modulus decreases
dramatically to 20 and 349 GPa. It should be noted, that the drastic
decrease of hardness of the coatings at —300V can be explained by
development of (200) preferred orientation, which is less densely
packed that (111) and by increasing of grain size. Based on oscillation
of the signal of constituent elements (see Fig. 3), we can conclude that
the (TiZrNbTaHf)N and Mo,N layers have sharp and distinguished in-
terfaces. However, the increasing of substrate bias leads to large

Fig. 5. Cross-sectional STEM image of the
(TiZrNbTaHf)N/MoN multilayered coating obtained
under —100V (a), low-magnification bright-field
TEM image (b), corresponding SAED pattern (c),
high-resolution TEM image and corresponding FFT
pattern as an inset (d) and inverse FFT image (e) of
the image (d). The Mo,N (311) oriented grains are
colored in green color in figure e, while
(TiZrNbTaHf)N grains with (311) and (220) or-
ientations are colored in blue and red color, respec-
tively. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web
version of this article.)

l( TiZINb TaHf)N

15 nm
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Table 3
Thickness, bilayer period (A) and crystallite size (D) of the (TiZrNbTaHf)N/
(MoN) multilayered coatings.

Substrate Thickness, um  Bilayer Crystallite size, Crystallite size,
bias, Ug, V period, A, (TiZrNbTaHf)N, D, (Mo,N), D, nm
nm nm
—-100 11.5 20 9 5

—200 10 25 10
—-300 12.2 25 15 10

diffusion of elements in the coatings, to the loss of independent inter-
faces and probably to incomplete layers.

Elastic strain to failure H/E* and resistance to plastic deformation
H3/E*2 were calculated from the nanoindentation data (Fig. 7). The best
ability to resist the plastic deformation (H3%/E*?) of 0.38GPa and
highest elastic strain prior to failure of 0.1 among the studied coatings
demonstrates the multilayer coating deposited under — 200 V substrate
bias voltage.

The coefficient of thermal expansion (CTE) of the investigated nano-
composite coatings can be estimated according to the rule of mixing from
the CTEs of binary nitrides of constituent elements: oy = 8.1 X 107K ™7,
Ozn =7 X 107K Y, o = 6.5 X 107°K ™Y, oy = 3.6 X 1076K™ 1,
onpn = 10.1 X 1078K ™Y, ooy = 6.7 X 1076K ™! [95-98]. As a result,
the overall CTE (see Table 4) can be found from the equation [95]:

ArizenbTatf/MoN = oTiN X Crin + dzv X Czinv + appv X Cpy + aran X Cran
+ anpin X Cpin + on X Covons

where C; - is a the concentration ratio of the individual target element to the
total target elements in the coating [95]. The significant difference of CTEs
of (TiZrtNbTaHN/MoN and substrate (Ctiomisnor seel — 18 X 107 °K™1)
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Fig. 6. Cross-sectional bright field TEM image with
SAED as an inset (a), STEM image (b), and high re-
solution cross-sectional TEM image (c) of the
(TiZrNbTaHf)N/MoN multilayered coating obtained
under —300 V with corresponding inverse FFT image
(d) and the local FFTs acquired from the MoN/
(TiZrNbTaHf)N interface in the lower left part of
figure ¢ (b), from the (TiZrNbTaHf)N layer (e) and
(TiZrNbTaHf)N/MoN interface in the upper right
part of figure c (f). The Mo,N (200) oriented grains
are colored in green color in figure d, while
(TiZrNbTaHf)N (111) oriented grains are colored in
purple color. (For interpretation of the references to
color in this figure legend, the reader is referred to
the Web version of this article.)

(200)-Mo,N,

(200)-Mo,N
2 2

could lead to evolution of larger thermal stress in the coatings. For calcu-
lation of the Young's modulus of the coatings (Table 4) by means of formula
(1), we used Poisson ratio equal to v = 0.25, which is the most frequently
value for nitride films reported in the literature [95,99-101].

4. Discussion
4.1. Microstructure

Our experimental analysis of chemical bonding state, elemental
composition, structural-phase state and microstructure using different
high-resolution methods such as SIMS, GDMS, XPS, XRD and HRTEM
have shown that the (TiZrNbTaHf)N/MoN nanocomposite coatings
deposited by vacuum arc deposition at different substrate bias grow
with local cube on cube epitaxy of fcc-MoN and fce-(TiZrNbTaHf)N
grains. The growth of such structure can be explained by the following
considerations.

Nitride coatings, like (TiZrNbTaHf)N, based on MPEAs with ran-
domly distributed atoms tend to form a disordered solid solutions with
a simple crystal structures [53-57]. It is important to note, that the
crystal structure of the binary nitrides of constituent elements and their
lattice parameter are approximately equal (TiN — FCC with lattice
parameter, a = 0.424 nm; ZrN - FCC, azy = 0.459 nm; NbN - FCC,
anpy = 0.442nm; TaN FCC, aray = 0.44nm; HIN FCC,
apgpy = 0.453nm) [92]. In our case the lattice parameter of (TiZrNb-
TaHf)N is 0.446 and 0.448 nm for the coatings deposited under —100 V
and —200V, respectively, which is close to the lattice parameter of
binary nitrides of constituent elements. The N p-orbitals interact with
the transition metals d-orbitals forming sp®d® hybridization typical for
the transitional metal nitrides with NaCl structure. Therefore, there is a
high probability of forming NaCl structured solid-solution where the
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Fig. 7. Hardness, elastic modulus, H?>/E* and H/E ratios for (TiZrNbTaHf)N/MoN multilayered nanocomposite coatings obtained under different substrate bias.

Table 4
Poisson ratio, Young's modulus and coefficient of thermal expansion of the
investigated coatings deposited under different substrate bias.

Substrate Poisson ratio  Young's Coefficient of thermal
bias, V modulus, GPa expansion, x 10" °K™*
-100 0.25 408 5.83

—200 423 6.3

—-300 487 5.59

transition metals occupy the metallic sub-lattice cites.

It is well known that the metals (Ti, Zr, V, Hf, Nb, Ta, Mo, W) which
belong to IV-VI groups can form binary and ternary compounds with
nitrogen that are metastable disordered solid solution with FCC struc-
ture [102]. However, limited information are available on the struc-
tural phase state of multicomponent coatings. That's why we employed
first-principles calculations for obtaining the general picture of phase
formation in (TiZrNbTaHf)N/MoN multilayered coatings.

In our theoretical interpretation of the experimental results, we
concentrate on the binary and ternary alloys. However our approach is
quite justified because the goal of our theoretical study is to show the
possibility of the formation of different phases in the complex
(TiZrNbTaHf)N solid solutions that form the hard coatings considered
above. The phase stability is based on an analysis of mixing energy.
Positive mixing energy implies that a solid solution is not stable, and
will decompose into separate phases with the chemical driving force
(Emix)- Unstable alloys can be thermally stabilized in some range of
compositions, because the configurational entropy is always positive
and promotes a decrease in Gibbs free energy. On the contrary, a stable
solid solution has negative mixing energy.

In Fig. 8, the mixing energies of the binary alloys based on titanium,
zirconium, hafnium and tantalum nitrides with the Bl structure are
showed. For the sake of comparison, the mixing energies calculated by
a first-principles pseudo-potential method (VASP code) using the 32-
atom cells with the randomized arrangement of transition metal atoms
in the sites of the metallic sub-lattice [93]. For Zr;_,Ti,N and Ti,_Hf,N,
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all non-end-member structures have positive E,;x. There is a little
asymmetry of E,;x(x) leaning to TiN-side in Zr; 4Ti,N but much more in
Ti;  Hf{N in agreement with the results [93]. Our E,;, values are
slightly higher compared to those calculated in Ref. [93], which is
supposed to be due to the ordered cells used in our calculations. The
positive mixing energies are observed in Ti; ,Ta,N, Zr; ,Ta,N and Hf;.
xTaxN, indicating that these alloys can be stable in a wide range of
temperatures. The minimums of E;x(x) is located closer to TaN-side,
especially in Zr; ,Ta,N. In our previous work [63], we have shown that
the most values of mixing energy for Ti; _4Nb,N in the range of
0.25 < x =1 are negative, which indicates that such alloys can be
stabilized as solid solutions at moderate temperatures.

Table 4 shows the calculated mixing energy for the ternary Zr;.
xTiyTay.xy, ZriHfyTa; ., and Ti; Hf;Ta; ., alloys. The results pre-
sented in Table 5 enable us to estimate an effect of the substitutional
atoms on the stability of the binary alloys considered above. The
comparison of the results presented in Fig. 8 and Table 4 shows that:

1) Zr; 4TixN and Ti; Hf;N can be stabilized by the substitution up to
50% of Zr, Ti, Hf atoms by Ta atoms;

2) The substitution up to 50% of Ti, Hf and Ta atoms by Zr atoms in
Ti; xTa,N and Hf; ,Ta,N leads to an increase in E;, of these alloys;

3) Zr,4Ta,N is destabilized due to the substitution up 50% of Zr or/and
Ta atoms by Ti atoms.

An analysis of the results presented in Table 5 and in our work [63]
shows that along with the transition metal mononitrides and the stable
binary solid solutions shown in Fig. 8, the following ternary alloys, such
as Tiy . Hf Ta; vy, Zry  Hf Ta; sy, Zr¢ 25Tig 25Tag.s, Ti; —xNbyN can form
in the (TiZrNbTaHf)N disordered solid solutions. It follows that the
metallic matrix of the deposited nanocomposite coatings can contains
transition metal mononitrides and their solid solutions, depending on
deposition conditions. Due to the low mixing energy of the mentioned
ternary alloys, the decomposition of corresponding solid solution
phases can take at a relatively high temperature, thus will be re-
sponsible for the stability of the coating system at high thermal loads.
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Fig. 8. Calculated mixing energies (full circles) for Mel; ,Me2,N alloys (Mel,
Me2 = Ti, Zr, Hf, Ta) as functions of composition x. Open circles are the results
reported in Ref. [92]. Solid and dashed lines are the spline approximation of the
calculated points.

Table 5
Mixing energy (Enix) for the ternary alloys.

Solid solution Enmix Solid solution Enmix Solid solution Emix
(meV/ (meV/ (meV/
atom) atom) atom)

Zro.2sTip2sTags  —10.9 Zro 2sHfo 25Tags  —7.8 Tip.2sHfo.25Tags  —25.1

Zro2sTipsTag2s 13.1 Zro2sHfosTagas —3.6 Tip.asHfosTap2s —4.8

ZrosTip.2sTags  20.5 ZrosHfo2sTagas —1.9 TiosHfo.2sTag2s —11.7

It is worth to note that Mo is a weaker nitride-forming element char-
acterized by low enthalpy of formation AHY?N = —81.6kJ/mol in con-
trast with strong nitride-forming elements, like Ti, Ta, Zr and Nb, with
easy nucleation: AH"™ = —335kJ/mol, AH™ = —252kJ/mol,
AH”N = —365kJ/mol, AH'™N = —234.7kJ/mol, AH'™ = —373.6kJ/
mol. Nevertheless, the obtaining of solid solution with simple structure in
(Ti-Zr-Nb-Hf-Ta)N/MoN coatings can be anticipated based on the afore-
mentioned fact.

Thus, according to Hume-Rothery rules [103], the formation of the
solid solutions is very favourable as a consequence of the relatively low
atomic size mismatch between the constituent atoms, the small elec-
tronegativity difference and the small valence difference between Nb,
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Ta, Hf, Zr and Ti in addition to the mentioned above a low energy
difference between the corresponding nitride phases. Indeed, the dif-
fraction peak positions associated with (TiZrNbTaHf)N phase of the
coatings deposited under —100V and —200V are in the intermediate
position between stress-free TiN and HfN. This can be assigned to NaCl
lattice dilatation due to random occupation of the metal sub-lattice sites
by bigger atoms than Ti (rr; = 1.40 A) such as Hf (rue = 1.55 [o\), Ta
(tra = 1.45A), Zr (rz = 1.55A) and Nb (ryp = 1.45A).

MoN layers from investigated samples are polycrystalline exhibiting
diffraction peaks related to cubic y-Mo,N phase. Recently, I. Jauberteau
et al. [104]. have reported that there are three molybdenum nitride
phases which are stable in thermal equilibrium (y-Mo,N with cubic
structure of NaCl B1-type, 3-Mo,N — tetragonal modification of y-MosN
phase and 8-Mo,N — hexagonal structure). Molybdenum nitride also can
be synthesized in the thermodynamically unstable stoichiometric MoN
phase of NaCl-Bl-type cubic structure. The formation of such phase
place demands high temperature and concentration of nitrogen. It
should be noted that, it is difficult to determine the kind of phases of
MoN from XRD studies. Especially it related to y-Mo,N and -Mo,N
phases, which have a similar intense of reflection at low Bragg angles
[4,105]. In our case, the lattice parameter of 0.416-0.418 nm of MoN
(obtained from XRD peak positions) is close to the values obtained by
Bull et al. [106], Thara et al. [107], Stober et al. [108], which correspond
y-Mo,N phase of Fm3m space group.

It was shown that the application of different substrate biases leads
to microstructural modification in terms of the films preferred crystal
orientation. At low U a strong (111) and (311) peaks of (TiZrNbTaHf)N
and (111) of Mo,N was found. Under higher energetic conditions (at
—300 V) more closed packed (111) plane reduced and eventually dis-
appeared (in the case of Mo,N) and there is an evolution of more open
channeling planes: (200) of (TiZrNbTaHf)N and (200), (220) of Mo,N.
Such textural changes are known due to the competition between
thermodynamic and kinetic forces: enhanced ad-atom mobility, plasma
sheath, re-sputtering yield, anisotropy in surface diffusivities, cascade
effects, free surface and strain energies.

It should be noted, that the more intensive (311) orientation, which
is parallel to the sample surface. In contrast, the (111) orientation can
attributed to the difference in growth rates between the two crystal-
lographic planes and by a preferential re-sputtering of the N atoms lying
on the (111) planes under high ion bombardment deposition at —300 V
[109,110]. Moreover, the clearly visible XRD peak-shift of the
(TiZrNbTaHf)N reflections toward higher angle positions for the
coating deposited under —300 V substrate bias is a consequence of the
lattice shrinking. This is a result of the depletion of the plasma flow on
big atoms that is well demonstrated by EDS analysis (Table 6). As a
possible explanation of this depletion one can consider the increase of
the target current during the deposition of the coating deposited under
300 V. The increase of the target current from 90 A to 120 A, give rise to
the increment of the target temperature, thus increasing its poisoning
by N. The formation of the nitrides of the constituting elements on the
target results in the preferential erosion of more easily eroded phases
like TiN (T, = 2949 °C), ZrN (T, = 2980 °C) and NbN (T, = 2573 °C)
compared to HfN (T, = 3310°C) and TaN (T, = 3090 °C) whose de-
pletion is observed. This preferential erosion may subsequently influ-
ence the composition evolution of the plasma and the resultant film

Table 6

EDS quantification of metallic elements for the (TiZrNbTaHf)N/MoN coatings
deposited at —100V, —200V and —300 V substrate bias. (“~”means that the
element was not quantified due to its low concentration).

Usb Ti Zr Nb Hf Ta Mo

100 16.07 12.10 5.34 12.16 10.91 43.41
200 15.66 11.44 10.35 6.39 6.03 50.13
300 43.23 13.01 19.45 - 0.08 24.23
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composition visible as enrichment on Ti and Nb.

Recently, many works have shown the influence of substrate bias on
the orientation of growth plane, like the transition from (111) to (200)
preferred orientation in different nitride systems: Cr-Mo-N [111], Ti-Al-
N [112], CrN/AIBN [113], TiAlLaN [114], TiN-MoSx [115], TiAlSiN
[116], (Al; sCrNbgsSigsTi)Ny [117] and others [55,118,119]. How-
ever, the detailed physical mechanism of the development of preferred
orientation under the influence of substrate bias is not yet fully un-
derstood.

The textural evolution of (TiZrNbTaHf)N/MoN multilayered nano-
composite coatings can be described through a complex of interplay
between thermodynamic and kinetic forces, which have been recently
studied for TiN [120-125]. From the point of view of modern ther-
modynamics, minimal total energy, which consist of surface, stopping
and strain energy responsible for evolution of (200), (220) and (111)
planes, respectively. According to this mechanism, the (111) crystal-
lographic orientation is more favorable in the case of low ion-bom-
barding-energy conditions; this is due to the occupation of lower-energy
position by the adatoms. In this case, the probability of growth of the
(111) already nucleated grain is higher than the probability of nu-
cleation of a new grain. Moreover, the higher Ti adatom mobility on
(200) compared to (111) surface, for which Ti adatom chemical po-
tential is pri111 < Mri200, promotes Ti adatoms moving off the (200)
islands and to their adjacent (111) grains. Thus, with increasing bias
voltage the collision, and therefore the mobility of adatoms also in-
creases, consequently the deposition conditions closely approach the
thermodynamic equilibrium, which leads to prevailing of thermo-
dynamic forces under kinetic regimes. Therefore, the development of
planes with minimum surface energy during nucleation and coales-
cence stages, which is preferred to less compact (200) orientation, is
observed under high ion irradiation conditions. Additionally, the in-
crease of adatom mobility at 300 V increases the probability of (200)
islands to expand laterally.

However, there are some works [126-129], which suggest that the
model, which we have described above, is doubtful. Recently, different
mechanism of growth process (anisotropy in surface diffusivities, col-
lisional cascade effects and adatom mobility's) based on kinetic driving
force was proposed [121,128,129]. The high-energy condition of de-
position at —300 V leads to development and evolution of more open
channel directions (e.g. 200, 220) due to the larger penetration depth of
incident ions (collision cascade effects). The higher energy of ions leads
to the increasing of density of defects, and as a result the most close
packed plane (111) in FCC crystal structure become more affected by
different type of cascades.

4.2. Mechanical properties

The main mechanism responsible for the hardening of the
(TiZrNbTaHf)N layer is solid-solution strengthening due to impeding
dislocation motion at local stress fields created by the solute atoms. The
solid-solution hardening in the coating deposited at 300 V has lower
contribution to the hardening because of lower amount of solute ele-
ments in the lattice.

Multilayer architecture allows to achieve higher hardness com-
paring with monolithic coatings due to the impeding dislocation motion
across the interfaces and due to the difference in elastic modulus of the
layers. Moreover, the enhancement of hardness is due to the reduction
of grain size (Hall-Petch strengthening), which is a result of the in-
creasing of volume fraction of grain boundaries with high interfacial
energies [130]. The formation of strong MeN chemical bonds and low
modulation period (5-20nm) also a reason for the enhancements of
hardness. In our case, the highest hardness 29 GPa has the coating with
the thinnest bilayer period (20 nm).

The high H/E*ratio imply that a typical tribo-contact during sliding/
abrasive wear can remain elastic and recover due to the increased
ability of the coating material to absorb energy during deformation up

Composites Part B 146 (2018) 132-144

to fracture at high stresses. Therefore wear resistance of the coating
with H/E X ratio in the range of 0.1 [131] can be improved at high
loads due to absence of plastic deformation. The high H3/E? ratio
means that the coating possess higher fracture toughness among the
studied coatings suggesting that the resistance of the coating to the
cracking sufficiently high and contributes to the protective efficiency of

the coating exposed to the external load [132].

5. Conclusions

1. The deposited (TiZrNbTaHf)N/MoN multilayered nanocomposite
coatings obtained by vacuum-arc deposition under different energy
conditions have a complex chemical composition, which consists of
nitrides of constituent elements. The presence of contaminations
H*,C*,Na™,K" and Cr* ions from ambient atmosphere was found
in the coatings.

. The formation of (TiZrNbTaHf)N and Mo,N phases with FCC crystal
structure was revealed in all coatings. The change of preferred or-
ientation from (111) & (311) to less packed (200) under conditions
of high substrate bias was observed. Using first-principles calcula-
tions it was shown that the metallic matrix of the (TiZrNbTaHf)N
coatings can contain transition metal mononitrides and their solid
solutions, depending on deposition conditions.

. The HR-TEM observations revealed that the coatings have columnar
growth and consist of multilayers with modulation period between
20 and 25nm. The sub-grain structure of the columnar grains is
composed of nanodimentional grains, which grow with local cube
on cube epitaxy with coherent interfaces. The elemental inter-dif-
fusion process between intrinsic layers was identified by EDS line
scan.

. The maximum hardness of approximately 29 GPa was obtained at a
bias voltage of —200V and the thinnest modulation period of bi-
layer (20 nm). The enhancement of mechanical properties was at-
tributed to Hall-Petch strengthening, solid-solution strengthening,
formation of strong MeN chemical bonds and low modulation
period. Good ability to resist the plastic deformation (H>/E? ratio)
allows to use (TiZrNbTaHf)N/MoN multilayered nanocomposite
coatings as a protective materials.
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